Available online at www.sciencedirect.com

. JOURNAL OF
} scmncs@mnscr SOUND AND
A = VIBRATION
LSEVIER Journal of Sound and Vibration 286 (2005) 663—668

www.elsevier.com/locate/jsvi
Short Communication

A conserved quantity and the stability of axially
moving nonlinear beams

Li-Qun Chen®*, Wei-Jia Zhao®

dDepartment of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200030, China
>Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

Received 16 September 2004; received in revised form 24 December 2004; accepted 10 January 2005
Available online 21 March 2005

Abstract

Free nonlinear transverse vibration is investigated for an axially moving beam modeled by an integro-
partial-differential equation. Based on the equation, a conserved quantity is defined and confirmed for
axially moving beams with pinned or clamped ends. The conserved quantity is applied to demonstrate the
Lyapunov stability of the straight equilibrium configuration in transverse nonlinear of beam with a low
axial speed.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving beams can represent many engineering devices [1,2]. Despite many advantages
of these devices, noise and vibration, particularly transverse vibration, associated with the devices
have limited their applications. For example, in belt drive systems, the vibration of the belt leads
to noise and accelerated wear of the belt; in band saws, the vibration of the blade results in poor
cutting quality. Therefore, understanding transverse vibrations of axially moving beams is
important for the design of the devices.

The transverse motion of an axially moving beam can be regarded as free vibration if both
external excitations and parametric excitation are not taken into consideration. It is well known
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that the total mechanical energy in free vibration of an undamped nontranslating beam with
pinned or fixed ends is constant. However, many researchers found that the total mechanical
energy associated with free vibration of an axially moving beam is not constant when the beam
travels between two motionless supports. Barakat [3] considered the energetics of an axially
moving beam and found that energy flux through the supports can invalidate the linear theories of
axially moving beams at sufficiently high transporting speed. Tabarrok et al. [4] showed that the
total energy of a traveling beam without tension is periodic in time. Wickert and Mote [5]
presented the temporal variation of the total energy related to the local rate of change and
calculated the temporal variation of energy associated with modes of moving beams. Considering
the case that there were nonconservative forces acting on two boundaries, Lee and Mote [6]
presented a generalized treatment of energetics of translating beams. Renshaw et al. [7] examined
the energy of axially moving beams from both Lagrangian and Eulerian views and found that
Lagrangian and Eulerian energy functionals are not conserved for axially moving beams. Zhu and
Ni [8] investigated energetics of axially moving strings and beams with arbitrarily varying lengths.
Hence the variation of the total mechanical energy is a fundamental feature of free transverse
vibration of axially moving beams.

Although the total mechanical energy of axially moving materials is generally not constant,
there does exist an alternative conserved quantity. Renshaw et al. [7] presented both Eulerian and
Lagrangian conserved functionals for axially moving beams. Chen and Zu [9] generalized their
results to nonlinear free vibration of axially moving beams. They adopted the simplest model, a
partial-differential equation developed by Thurman and Mote [10] for axially moving materials
undergoing nonlinear transverse vibration. The models are based on the assumptions that the
plane transverse is not coupled with the longitudinal motion, and the vibration amplitude is small
so that only the lowest order nonlinear term is retained in the governing equation. However, the
widely used model for free vibration of axially moving beam is an integro-partial-differential
equation derived from uncoupling the governing equation for coupled longitudinal and transverse
vibration by neglecting the fast dynamics in the longitudinal direction [11-15]. Such a nonlinear
model was also used in analysis of parametric vibration [16] and forced vibration [17]. In the
present investigation, it will be demonstrated that there exists a conserved quantity in the free
nonlinear transverse vibration governed by the integro-partial-differential equation. The
conserved quantity will be applied to verify that the straight equilibrium configuration of an
axially moving beam is stable in the Lyapunov sense for low axial speed.

2. A conserved quantity in vibration of an axially moving beam

Consider a uniform axially moving beam of linear density p, cross-sectional area A4, cross-
sectional area moment of inertial 7, Young’s modulus E, and initial tension P. The beam travels at
the constant and uniform axial transport speed } between two boundaries separated by distance
L. The distance from the left boundary is measured by fixed axial coordinate X, and time is
denoted by 7. The transverse displacement of the beam is given by the Eulerian variable U(X, T)
in the sense that U(X, T) describes the displacement of the beam element instantaneously located
at X even though different material elements occupy that position at different times. The
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governing equation in the dimensionless form is [11-15]
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Define a functional in a specified spatial domain (0, 1):
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The time rate of change of the functional is

dar - r'o 1o\ 1 u\> v u\T o fou\? [P fou)?
— = — == —(1 —v*)=— L= —1—/—dd. 4
di /0 o [2 (a:) 3 ”)<6x> 3 (ax2> 3 <ax> L \ay) 4[4 @
Here, the order of differentiation and integration can be interchanged, as the limit of
integration is time independent. After some mathematical manipulations, one can cast Eq. (4) into
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where
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From the governing equation (1), one gets the time rate of change of the functional (4)
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If the beam is constrained by simple or fixed supports, the boundary conditions in the
dimensionless form are

2
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In both cases, Eq. (6) leads to
drs
O 0. (8)

Thus, I remains a constant during the free transverse vibration of an axially moving beam
governed by Eq. (1).

If v; =0, Eq. (3) gives the corresponding result in linear transverse vibration of an axially
moving beam obtained by Renshaw et al. [7]. If vy = 0, Eq. (3) yields the corresponding result in
transverse vibration of an axially moving Kirchhoff string [18].
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Here, the quantity 7 is defined from the Eulerian view, which is concerned with a specified
spatial domain. A Lagrangian conserved functional, which is concerned with a specified
set of particles, can be similarly defined. As Renshaw et al. [7] concluded, a conserved
Eulerian functional qualifies as Lyapunov functionals in stability analysis, while a
conserved Lagrangian functional cannot serve as Lyapunov functionals because their time
derivatives are only defined at an instant. Therefore, this Letter discusses only the conserved
Eulerian functional.

3. The stability of the straight equilibrium position

The conserved quantity (3) can be used to demonstrate the stability of the straight equilibrium
configuration of a beam moving with low axial speed. That is, the resulting vibration about the
equilibrium produced by a small initial disturbance will be small.

Define a norm for a function f on [0, L]:
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For the solution u(x, ¢) of Eq. (1) under the boundary condition (7) and the initial conditions
Ou
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if the axial speed is satisfied with v<1, then there exists a positive number k such that
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In fact, the Holder inequality and the boundary conditions (7) yield
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where
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As I'is conserved during the vibration, its value remains a constant that can be calculated at the
initial time. Under the initial condition (10),

o, 1 dazU}dzcxzvzda2lda2

Based on the definition (9)

I< ko[l |+ NBEOI + o) 2], (16)
where
_ 1o o}
k2 = maX{z,E,i}. (17)
Let
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Then, inequality (11) holds as the result of inequalities (13) and (16).

Inequality (11) means that the resulting vibration of small initial disturbance will be small.
Hence, the straight equilibrium configuration of an axially moving beam is stable in the Lyapunov
sense.

4. Conclusions

This Letter investigates free nonlinear transverse vibration of an axially moving beam modeled
by an integro-partial-differential equation. Based on the equation, a conserved quantity is defined
and confirmed for axially moving beams with pinned or clamped ends. The conserved quantity
defined here reduces to the corresponding known result of linear vibration of an axially moving
beam if the nonlinear term is dropped out. The conserved quantity is applied to verify the
Lyapunov stability of the straight equilibrium configuration in transverse nonlinear vibration of
an axially moving beam.
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